Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6686): 946-949, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422142

RESUMO

Conventional supply-side approaches overlook potential benefits.

2.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514805

RESUMO

The study of Domain Generalization (DG) has gained considerable momentum in the Machine Learning (ML) field. Human Activity Recognition (HAR) inherently encompasses diverse domains (e.g., users, devices, or datasets), rendering it an ideal testbed for exploring Domain Generalization. Building upon recent work, this paper investigates the application of regularization methods to bridge the generalization gap between traditional models based on handcrafted features and deep neural networks. We apply various regularizers, including sparse training, Mixup, Distributionally Robust Optimization (DRO), and Sharpness-Aware Minimization (SAM), to deep learning models and assess their performance in Out-of-Distribution (OOD) settings across multiple domains using homogenized public datasets. Our results show that Mixup and SAM are the best-performing regularizers. However, they are unable to match the performance of models based on handcrafted features. This suggests that while regularization techniques can improve OOD robustness to some extent, handcrafted features remain superior for domain generalization in HAR tasks.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Atividades Humanas , Conscientização , Acelerometria
3.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36236427

RESUMO

Human Activity Recognition (HAR) has been studied extensively, yet current approaches are not capable of generalizing across different domains (i.e., subjects, devices, or datasets) with acceptable performance. This lack of generalization hinders the applicability of these models in real-world environments. As deep neural networks are becoming increasingly popular in recent work, there is a need for an explicit comparison between handcrafted and deep representations in Out-of-Distribution (OOD) settings. This paper compares both approaches in multiple domains using homogenized public datasets. First, we compare several metrics to validate three different OOD settings. In our main experiments, we then verify that even though deep learning initially outperforms models with handcrafted features, the situation is reversed as the distance from the training distribution increases. These findings support the hypothesis that handcrafted features may generalize better across specific domains.


Assuntos
Atividades Humanas , Redes Neurais de Computação , Humanos , Reconhecimento Psicológico
4.
Sensors (Basel) ; 20(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707861

RESUMO

The field of biometrics is a pattern recognition problem, where the individual traits are coded, registered, and compared with other database records. Due to the difficulties in reproducing Electrocardiograms (ECG), their usage has been emerging in the biometric field for more secure applications. Inspired by the high performance shown by Deep Neural Networks (DNN) and to mitigate the intra-variability challenges displayed by the ECG of each individual, this work proposes two architectures to improve current results in both identification (finding the registered person from a sample) and authentication (prove that the person is whom it claims) processes: Temporal Convolutional Neural Network (TCNN) and Recurrent Neural Network (RNN). Each architecture produces a similarity score, based on the prediction error of the former and the logits given by the last, and fed to the same classifier, the Relative Score Threshold Classifier (RSTC).The robustness and applicability of these architectures were trained and tested on public databases used by literature in this context: Fantasia, MIT-BIH, and CYBHi databases. Results show that overall the TCNN outperforms the RNN achieving almost 100%, 96%, and 90% accuracy, respectively, for identification and 0.0%, 0.1%, and 2.2% equal error rate (EER) for authentication processes. When comparing to previous work, both architectures reached results beyond the state-of-the-art. Nevertheless, the improvement of these techniques, such as enriching training with extra varied data and transfer learning, may provide more robust systems with a reduced time required for validation.


Assuntos
Aprendizado Profundo , Eletrocardiografia , Biometria , Bases de Dados Factuais , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...